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On the Mode-Coupling Formation of Complex
Modes in a Nonreciprocal Finline

Ching-Kuang C. Tzuang, Senior Member, IEEE and Jing-Min Lin, Student Member, IEEE

Abstract— This paper studies and models the mechanism for
forming the complex modes commonly found in boxed quasi-
planar or planar guided-wave structures. To illustrate the fact
that the mode-coupling among the various forms of modes is
closely related to the formation of complex modes, the dis-
persion characteristics of the complex propagation constants
(or the so-called mode spectrum) of a nonreciprocal unilateral
finline are obtained by the rigorous full-wave SDA (spectral-
domain approach). It is found that in the mode spectrum of
the nonreciprocal finline, a forward wave and a backward wave
interact to produce a pair of complex modes. The interactions
between two forward (backward) traveling waves, between a
forward wave and a backward wave, and between two complex
waves (modes) are modeled by applying the model-coupling
theory. The concept of hypothetical modes is introduced in the
model. These hypothetical modes are obtained by applying mode-
coupling theory to the mode spectrum previously obtained. The
approximate values obtained for the propagation constants of the
three types of wave interactions using the model presented in
the paper are in close agreement with those given by the full-wave
SDA.

I. INTRODUCTION

N open lossless media, the following types of guided

complex waves at a plane interface have been reported
[1]: 1) a forward surface wave and a backward surface wave
coexisting in pairs and carrying no net real power, 2) two
degenerate proper (spectral) complex waves coupled in a
manner that no real power is carried, and 3) improper leaky
waves. The existence of complex waves (modes) in electrically
shielded lossless waveguides, e.g., dielectric-loaded partially
filled circular waveguide [2], double-layer circular waveguide
[3], [4], shielded dielectric image guide [5], [6], finline [7],
microstrip line [8], [9], suspended coupled microstrip line [10],
CPW (coplanar waveguide) [11], and asymmetric coupled
suspended striplines [12], has already been reported. These
complex modes, it has been shown, appear inside an electric
enclosure and they are not leaky waves. The complex modes
are also physical modes which must be considered if accurate
results are to be obtained for a discontinuity problem. Omar
and Schiinemann demonstrated this in their analysis of a
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finline step discontinuity problem [7]. The complex modes are
therefore the essential constituent part of the mode spectrum
associated with many inhomogeneously filled waveguides.

Some research has been conducted toward understand-
ing the general properties of the guided complex modes.
Omar and Schiinemann show that complex modes and back-
ward waves can be supported by inhomogeneously filled
and anisotropically filled lossless waveguides of arbitrarily
shaped cross section [13]. Another comprehensive treatment
on the existence of complex modes in such lossless inho-
mogeneously filled dielectric waveguides has been reported
separately by Mrozowski and Mazur [14]—[16]. They showed
that, in slightly perturbed homogeneous structures, a pair of
degenerate TE and TM modes existing in the homogeneous
guide are quite sensitive to the small perturbation. These
degenerate and below-cutoff modes then lead to the formation
of complex modes in pairs. Subsequently, they established a
formulation that predicts the existence of complex modes in
lossless diclectric guides [15], [16].

The main aim of this paper is to understand and model
in a very general sense the mechanism which forms the
complex modes. Apart from presenting an analysis of the
complex modes in the reciprocal waveguides, this paper gives
the dispersion characteristics of the propagation constants, or
the so-called mode spectrum, of a nonreciprocal unilateral
finline calculated by the rigorous full-wave SDA (spectral-
domain approach). Propagation in a nonreciprocal waveguide
consists of a group of forward traveling waves and a group of
backward traveling waves, of which the propagation constants
differ in sign and magnitude. This allows us to plot the mode
spectrum, as shown in Figs. 3—7 and discussed in Section IV,
as a function of frequency. The dual vertical axes are centered
at zero value. The left axis is for the normalized propagation
constant (8/ko), while the right axis is for the normalized
attenuation constant («/ko). Such an arrangement for the plot-
ting of mode spectrum of the nonreciprocal finline differs from
all the above-mentioned reports for the reciprocal waveguides
[2]-[16] and nonreciprocal waveguides [17]—[19]. In these
reports, the normalized propagation constant is assumed to be
only either positive or negative in value. Section IV summa-
rizes three types of wave interactions depicted (in the mode
spectrum), namely, 1) between a forward (backward) traveling
wave and a forward (backward) traveling wave, 2) between a
forward wave and a backward wave, and 3) between a pair of
complex modes and a pair of complex modes.

These various types of wave interactions between different
modes can be explained qualitatively by invoking the mode-
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coupling theory [20] in Section V. The theory is briefly
reviewed and extended to explain how different types of
mode interactions are established. Section VI introduces the
concept of hypothetical modes, which are obtained by applying
the mode-coupling theory to the mode spectrum previously
obtained by the full-wave SDA. The hypothetical modes
are assumed to be either linear or elliptical with frequency
although they are not necessarily linear or elliptical. The mode
couplings of these hypothetical modes result in propagation
constants of which the values are in very close agreement with
the full-wave data for the various types of mode interactions
discussed in Sections IV and V. The procedure to determine
the coupling coefficients between these various mode interac-
tions and the corresponding hypothetical modes is presented in
detail. The important conclusions are outlined in Section VII.

For the sake of clarity, Section II lists the symbols used
throughout this paper. Section III states the problems associ-
ated with the complex modes.

II. LIST OF SYMBOLS

Throughout the paper, the lossless waveguide cross section
is assumed to be in the Cartesian z-y plane. The waveguide
supports modes propagating along the longitudinal z direction.
We list the following symbols for reference.

e’“*; the time-harmonic factor of angular frequency w =
2r f

e~97%: the z-dependence factor

v = 3 — ja: vy is the complex propagation constant, 3 and
« are real numbers

(: the propagation constant, or the real part of the complex
propagation constant

«: the attenuation constant, or the imaginary part of the
complex propagation constant

vp: the complex propagation constant of the hypothetical
mode p

7Y¢: the complex propagation constant of the hypothetical
mode g

the forward traveling wave [20]: 8 > 0, a = 0
the backward traveling wave [20]: 8 < 0, . =0
the forward wave [21]: () - (88/0w) > 0

the backward wave [21): (8) - (88/0w) < 0

the group velocity v, = (98 Jow) ™

III. STATEMENT OF PROBLEMS ASSOCIATED WITH
COMPLEX MODES

The time-harmonic solutions for the complex modes of a
reciprocal waveguide are located in the four quadrants of the
complex ~ plane [4]. These complex modes () which appear
in pairs can be divided into two types. Omar and Schiinemann,
for example, chose one pair of the complex modes of the first
type for their finline discontinuity analysis [7]

(8> 0,a >0) (pairl of the first type).

¢y

y=48-ja
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They also demonstrated that, by choosing pair 1 of the first
type, the Poynting power of the complex modes carries no
real (active) power. Since the finline is reciprocal, the second
remaining choice for v is

y=xB8+ja (6>0,a>0) (pair2of the first type).

@

By investigating the derived characteristic equation for the
normalized propagation constant of a reciprocal dielectric-
loaded circular waveguide, Clarricoats reported that in the
vicinity of the special points denoted by P, @, R, S shown
in Fig. 1, the magnitude and sign of the complex propagation
constant y (the complex modes) can be assigned as indicated
[2]. No complex modes exist near points P and () in case (a)
and case (b) of Fig. 1. For case (c), the complex modes near
point R can be grouped into two pairs according to equations
(1) and (2). While for case (d), the complex modes near point
S take the following forms:

vy=p08xja (8>0,a>0) (pairl of the second type)

®)
or

v=—pfxja (6>0,a>0) (pair2 of the second type).

)

The following questions can be posed.

1) How general is Clarricoats’ theory? Can it be applied to
guided-wave structures other than the special dielectric-loaded
circular waveguide that he investigated?

2) Does a general theory exist that can explain and model
what happens in the mode spectrum of Fig. 1 and that of all the
above-mentioned papers [2]-[19]? For example, Clarricoats
pointed out that, referring to the case (d), where a forward
wave and a backward wave coexist, there must be a pair
of complex modes. Case (c), however, generates a pair of
complex modes not resulting from a forward wave and a
backward wave.

3) When will the two propagating modes or the two evanes-
cent modes not form the complex modes?

In what follows, we will report a unified theory to resolve
the questions raised in this section.

IV. COMPLEX MODES IN A NONRECIPROCAL FINLINE

Equations (1)—(4) represent various possible ways of group-
ing the solutions for the complex modes in the y-plane, at least
for the special case studies conducted by Clarricoats, Omar
and Schiinemann, and others [2]-[19]. If a nonreciprocal
waveguide can support complex modes, then, because of the
clear distinction between a forward traveling wave (3 > 0)
and a backward traveling wave (8 < 0) in this type of wave-
guide, only one pair of complex modes will be generated. The
nonreciprocity destroys the possibility of choosing the second
pair of complex modes once the first pair of complex modes is
obtained. In contrast to the two-pair solutions for the complex
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i
No complex modes exlt.{
Y

case(b) —a/ko

ﬂ/ ko f
A
No complex modes exist. Eg?g%;;t”i‘!‘;iﬁ: L
R of R are
y=+f-ja  (Eq.(1))
y=if+ia  (Ea(2))
P o Y Y
case(a) ~{ case(c) —a/ko
B8/xo
A
# forward wave Complex Modes to
(8 281 50y the left hand side
Q ow of S are

7= Btja (Eq.(3))
or

7y=-fzja (Eq-(4))
backward wnve; - f

region Do case(d)
(82 32 co)— - —l—

Fig. 1. Properties of the complex bropagation éonstants ﬁéar the special points denoted as P, Q, S for the four types of mode spectrum, case (a)-through-(d),
respectively. Case (a) two degenerate cut-off modes at point P. Case (b) 8a/8f = 0 at point Q, the bottom of an ellipse shape. Case (c) 8a/8f = oo
at point R, where the complex modes are in either £3 + jo or +8 — jo mathematical form. Case (d) 83/0f = oo at point S, where the complex

modes are in either 3 + jo or —3 + jo mathematical form.

modes in a reciprocal waveguide, the one-pair solutions for
the complex modes in a nonreciprocal waveguide distribute
themselves at only two of the four quadrants of the complex «y
plane. Thus, the complexity of the mode spectrum containing
the complex modes is reduced by half.

To illustrate the complex modes existing in a nonrecipro-
cal waveguide, the mode spectrum (Ey-odd, Ez-even) of a
symmetric unilateral finline with the material and structural
parameters shown in Fig. 2 is plotted in Fig. 3. As reported
in [22], the finline dispersion characteristics shown in Fig. 3
changed little when the applied dc magnetic field Ho varied
from 500 Oe to 30 Oe. It is believed that Fig. 3 illustrates the
common dispersion characteristics of an electrically shielded
nonreciprocal waveguide. A ferrite substrate magnetized in
the z-direction is sandwiched between two homogeneous
dielectric layers with relative dielectric constants €3 and e4.
Another homogeneous layer of ¢; is to the right of the metal
fins. Fig. 3 has dual vertical axes: on the left is the normalized
propagation constant, whereas on the right is the normalized
attenuation constant.

Being a nonreciprocal waveguide, the finline has many
forward traveling waves which are denoted as F;—F% in
Fig. 3. These forward traveling waves, by definition, have pos-
itive real propagation constants (v > 0). In contrast, By — By,
which denote the backward traveling waves, have negative real
propagation constants (y < 0). These two groups of modes
occupy the upper half and lower half of the mode spectrum,
respectively. Three types of mode interactions which exist in
the Fig. 3 will be discussed.

The first type of mode interaction is that the mode spectra,
represented by Fy —F% (or By —DBy), neither intersect with each
other, although some come close to each other, nor form any
complex modes. For example, frame (a), at the upper side

'y
X
&4 53§ & Sy & T
7 Al
Mo EIHJZ o) §W Mo | b
: 1
=
A -
y

l d h Iy

Fig. 2. Cross-sectional geometry of a unilateral finline integrated on the
stratified layers containing a ferrite substrate magnetized in x-direction. The
structural and material parameters are: 1 = 3.556 mm, d = A = 1 mm,
Iy, = 1.556 mm, b = 3.556 mm, $1 = sg = 1.628 mm, w = 0.3 mm,
g1 =4 = 1,62 = g3 = 12.5,4x M s = 4900G, and H, = 5000e.

of Fig. 3, shows that the modes designated as F» and Fj
have normalized propagation constants which differ by a very
small value near 32.5 GHz. Similarly, in frame (b), the two
backward traveling modes B3 and B4 do not intersect near
39.2 GHz.

The second type of implied mode interaction illustrated in
Fig. 3 is the type shown by the modes designated as Fy— By,
F5-Bs5, Fs—Bg [frame (c)], and F;—By; pairs. The F7—By
pair, for example, constitutes a pair of complex modes below
41.3 GHz, where 03/0w = co. A detailed SDA study of the
F— By pair indicates that at the point where the group velocity
is zero, i.e., (8/0w)™" = 0 (or 88/8w = o). Therefore, a
small backward wave region exists in Fig. 3. This will be
discussed in more detail in Section V. All the F;—DB, pairs,
1 = 4 to 7, have small backward regions. The complex modes
exist to the left of the intersect points where 90; /0w = oo and
1 = 4 to 7. These complex modes are found to be of either
v = G+ jo type [equation (3)] or v = —(F £+ ja [equation (4)]
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Fig. 3. The mode spectrum (Ez-even, Ey-odd) of a symmetric unilateral
finline of Fig. 2. The solid lines represent the normalized propagation constant
(the real part of the complex propagation constant) and correspond to the
left hand side of vertical axis. The dashed lines represent the normalized
attenuation constant (the imaginary part of the complex propagation constant)
and correspond to the right hand side of vertical axis.

type. These types of complex modes coincide with the case
(d) of Fig. 1, where complex modes coexist with the backward
waves and the complex modes possess the mathematical form
of either equation (3) or (4). The complex modes found here
are apparently the result of mode interaction of a forward wave
and a backward wave.

The third mode interaction is not merely confined to the
modes possessing real propagation constants, but may occur
between two complex modes. This additional complication is
shown in frame (d) of Fig. 3. In order to understand why the
imaginary parts do not intersect and real parts do, the real
and imaginary parts of the propagation constant need to be
investigated simultaneously. Similar observations are found in
other locations of Fig. 3.

In summary, when two modes with nearly equal propagation
constants interact, the result of mode interaction is either
modes with purely real propagation constants or modes with
complex propagation constants (complex modes). Further-
more, the various types of complex modes may also interact
to produce other complex modes.

In the next section, the mode-coupling theory will be
reviewed. This theory can be used to explain all the above-
mentioned observations on the mode spectrum of Fig. 3 quali-
tatively and to model the various types of the mode interactions
quantitatively.

V. MODE-COUPLING THEORY AND THE COMPLEX MODES

A. Review of Mode-Coupling Theory

When two independent modes 7, and <, propagate along
separate waveguides and couple through an aperture, the
resultant modal solutions after coupling has occurred are
designated as 7; and +y2. Pierce formulated the relationship
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between (vy1,72) and (vy,,,) as follows [20]:

2
71:71”;7"+\/(7”;%> + K?

2
72=7p;7q - (’Yp;’yq) + K?

where K is the coupling factor between -y, and ~,.

If v, and ~, represent the modes with codirectional power
flow, then the upper sign (+) applies in (5) and (6); but if -,
and ~y, have contradirectional power flow, the lower sign (—)
applies. Note that group velocity defines the direction of power
flow of a certain mode. Therefore, the slope of a certain mode
in Fig. 3 defines the direction of power flow of that particular
mode.

Inversely, v, and 7y, can be expressed in term of 7y, 7o,

©®)

(©)

and K.
Mt n-1)\ 2
=11 +\/( 2wk 0
M+ 72 n-\
=23 —\/( 2) K ®

In (7) and (8), if 1 and <2 have codirectional power flow,
the upper sign (—) applies, otherwise, the lower sign (+)
applies. The coupling coefficient K and the sign (+/—) relate
the modes before and after the coupling. Knowledge of the
K value and power flow directions enables the derivation of
the hypothetical modes, 7, and 4, from the modes ~y; and >
(ie., SDA data).

The resultant modal solutions +; and <o are the true
electromagnetic wave solutions satisfying the boundary value
problem imposed on Fig. 2. These two modes, v; and 7s,
can be obtained from the full-wave SDA approach. In fact,
the mode spectrum of Fig. 3 can be viewed, in a much more
general sense, as not being limited to two modes. The mode
«; represents the ith mode, where ¢ = 1,2,---,N and N is
the number of modes shown in Fig. 3.

The corresponding modes to 1 and 2 before the coupling
occurs are called the hypothetical modes because they do not
satisfy the boundary value problem of the specific waveguide
structure. These hypothetical modes with complex propagation
constants, designated as -y, and +y,, will be shown to be very
useful for explaining and modeling the three types of mode
interactions summarized in Section IV.

B. Qualitative Description of Mode-Coupling Mechanism
in the Nonreciprocal Finline

Frames (a), (b), (c), and (d) of Fig. 3 in Section 1V illustrate

three kinds of mode interactions existing in the nonreciprocal

finline shown in Fig. 2. With the aid of two-dimensional mode-
coupling theory (N = 2) and the concept of hypothetical
modes, described in Section V-A, the nature of mode-coupling
in each case described in Section IV is investigated. Through-
out the paper, the hypothetical modes -y, and ~, are assumed
to be either a linear or an elliptical function of frequency. The
determination of the hypothetical modes, -y, and -y, and their
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Fig. 4. Various types of mode interaction explained by mode-coupling theory. Subscripts 1 and 2 denote the true modes satisfying the boundary conditions
imposed on Fig. 2. Subscripts p and ¢ denote the hypothetical modes before the coupling occurs. All horizontal axes are the frequency axes in GHz. The
solid lines and the dotted lines represent the normalized propagation constants. The dashed lines and dashed-dotted lines represent the normalized attenuation
constants. (a) Mode interaction between two forward traveling waves. Solid lines: true modes; dotted lines: hypothetical modes. (b) Mode interaction between
two backward traveling waves. Solid lines: true modes; dotted lines: hypothetical modes. (c) Mode interaction between a forward wave and a backward wave.
Dotted lines: hypothetical modes; solid lines: real parts of 1 and ~y; dashed lines: imaginary parts of v and -y2. (d) Mode interaction between two pair of
complex waves. Solid lines: real parts of hypothetical modes; dashed lines: parts of hypothetical modes; dashed-dotted lines: the corresponding v1 and y2 modes.

coupling factor K will be described in Section VI for all three
kinds of mode interactions individually.

1) Mode Interaction Between a Forward (Backward) Trave-
ling Wave and a Forward (Backward) Traveling Wave: Mode
Fy and F> in frame (a) of Fig. 3 are approximated by two
hypothetical modes, v, and ~,, which are two straight lines
in the mode spectrum. The arrangement is shown in Fig. 4(a),
where v, > 0, 74 > 0, 0v,/0w > 0, 0v,/0w > 0. Thus,
vp and v, represent two forward traveling waves which have
codirectional power flow. To determine ~y; and -y, the upper
sign (+) is applied in (5) and (6). Obviously, v; and ~y, are
always real, and therefore no complex propagation constants
can be obtained. The resultant coupled-mode solutions for ~;
and 2 by applying (5) and (6) to the two assumed hypothetical
modes v, and -y, are also shown in Fig. 4(a).

In frame (b) of Fig. 3, modes By and Bs can also be
approximated by two straight lines 7, and 7, as shown in
Fig. 4(b). Now, v, < 0, 74 < 0, 07p/0w < 0, 9v,4/0w < 0.
Thus, -, and -y, represent two backward traveling waves with
codirectional power flow, which is opposite to the previous
case shown in Fig. 4(a). Again, the upper sign (+) is applied
in (5) and (6) to determine «; and #,. The values for y; and
v2 must also always be real and, as a consequence, there also
exist no complex modes.

2) Mode Interaction Between a Forward Wave and a Back-
ward Wave: Equations (5) and (6) indicate that the complex
modes will occur when certain conditions are met. If -y, and
Y4 are two propagating modes (i.e., o = 0), then <y, and -y, are
complex modes only when the lower (—) sign is applied in the
square root calculation. When -, and <y, are two evanescent

modes (i.e., § = 0), then v; and v, will be complex modes
only when the upper (+) sign is applied to (5) and (6).

If two hypothetical modes -y, and v, are assumed as shown
in Fig. 4(c), a forward wave and a backward wave near the
intersecting point of the two straight lines can be defined.
(This will become clear in the next section.) With proper
determination of the value of coupling factor K, equations
(5) and (6) will yield the solutions for «; and 72 as shown
in Fig. 4(c). The two solid lines represent both the forward
traveling wave and the backward traveling wave. The solid
line labeled 1 = (2 shows the degenerate real parts of the
complex modes and has a starting point at 33/9w = co. The
dashed lines labeled oy or ag are the two imaginary parts
of the complex propagation constants. These results are very
similar to those reported in Fig. 3 for the same form of mode
interaction.

3) Mode Interaction Between Two Complex Modes: In the
next section, it will become clear that the complex propagation
constants ;s and y» have their imaginary parts on the loci
of an ellipse, if v, and ~, are assumed to be linear with
respect to frequency. To begin, when we’re interested in
understanding the mode interaction between two complex
modes, it is assumed that the complex modes have their
complex propagation constants like those shown in Fig. 4(d).
Now, the two hypothetical modes 7y, and -, are no longer
linear functions of frequency. o, and «, (in dashed lines), the
imaginary parts of -y, and -y, represent two ellipses with long
and short axes, respectively. Since 3, and [, the real parts of
vp and <y, respectively, are two straight lines intersecting at
the point P, the product of 83,/0w and 93,/0w is negative.
Thus, the lower sign (—) in (5) and (6) applies in this case.
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Consequently, near the point P (a, = oy, Bp = fy), the
imaginary parts «; and «o of the corresponding v; and v
should be either higher or lower than the values of a;, (or
@) at the intersecting point (), where point @ and point P
are at the same frequency. The results for v; and -y, using
the dashed-dotted lines for the imaginary parts are plotted for
comparison with those shown in frame (d) of Fig. 3. Again,
both look very similar.

By invoking the model-coupling theory and making a proper
choice for the two hypothetical modes -y, and -y,, the entire
mode spectrum shown in Fig. 3 has been explained success-
fully. Thus, the questions raised in Section III have been
resolved, at least qualitatively.

VI. QUANTITATIVE DESCRIPTION OF MODE-COUPLING
MECHANISM IN THE MODE SPECTRUM OF FIG. 3

The material presented in Section V explained the mode-
coupling effects of various types of modes. This section shows
how to determine the hypothetical modes -y, and -y,, and
the value of the coupling factor K directly from the full-
wave data shown in Fig. 3. By doing so, it is hoped that a
deeper insight into the physical nature of the mode spectrum
can be gained. Furthermore, if the hypothetical modes -y,
and -y, can be obtained in a systematic and correct way,
substitution of their values into equations (5) and (6), should
allow comparison with the full-wave SDA solutions. If -y, and
v, are obtained correctly, both coupled-mode solutions and
full-wave data should be inclose agreement. Since, there are
mainly three distinct types of mode interactions discussed, we
will investigate them separately.

A. Mode-Coupling Between Two Forward
(Backward) Traveling Waves

For the case of hypothetical forward or backward traveling
modes, no complex modes exist as explained in Section V-B-
1. Turning to Fig. 4(a) or (b),

Y» = Bp )
Yqg = ﬂq (10
(0Bp/0w) - (0Bq/0w) >0 (11)

where 8, (7,) and B, (74) are both real numbers and have
codirectional power flow. Let

AB=p1— P2 (12)
Substituting (5) and (6) into (12), we obtain
Aﬂ:z\/(ﬁp 5‘1) + K2. (13)
After some algebraic manipulations, we have
@ =0 (14a)
B'BP Bp=Bq
% =0 (14b)
aﬂq Bp=Pq
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PAB 1
= >0 14
0 |5y VIO (140)
AP 1
562 Vi (149

Parts (a)—(d) of (14) suggest that AS has a minimum value
of 2K when 8, = f,. Turning to frame (a) of Fig. 3, an
examination of the modes F5 and F3 shows that A3 = 81 —f2
has a minimum value. Using the data shown in frame (a) as
an example, the minimum of AJ occurs at 32.5 GHz, which
means AfB/ko = 2K/ko = 0.0146. The slopes for the two
straight lines 3, and 8, are approximately determined by the
neighboring points on 8; and 5. One proper choice for 3, and
B4 is as indicated in Fig. 5(a), where they are chosen as two
asymptotic lines. Fig. 5(b) compares the resultant 3; and (32
obtained by substituting the values of 3, and 3, into equations
(5) and (6) to those obtained from the SDA data. Very close
agreement is obtained. The physical interpretation of Fig. 5(a)
and (b) is as follows. At the point where the two hypothetical
propagating modes, (3, and 3, possessing codirectional power
flow intersect, strong coupling occurs and a mode conversion
(exchange) takes place. The two modes then settle to become
the physical §; and 2 modes.

B. Mode Coupling Between a Forward Wave and a
Backward Wave: Complex Modes Occur

Assume that a forward traveling wave (3, and a backward
traveling wave (3, can be approximated by two straight lines.
These B, and B, modes are hypothetical and are defined
above the frequency, fintsec, the intersecting frequency of the
two modes as shown in Fig. 6(a). A backward wave region,
where 8, - (88,/0w) < 0, can be defined for the hypothetical
mode 3,. (B, is obviously a forward wave. Substituting the
values of 3, and j, into (5) and (6), one obtains the coupled-
mode solutions 7y; and 72. As shown in Fig. 6(a), a region of
complex modes exists. The resultant coupled-mode solutions
also exhibit a backward wave region.

From (5) and (6), the complex modes, due to mode coupling
of a forward wave and a backward wave, have their imaginary
parts expressed as

\/(/Bp 2 ﬁq) K2 :|:]Ol10r2 (15)

Let the two straight lines representing 3, and 3, be
Bp=0a-f+b (16)
Bg=c-f+d 17)

where a, b, ¢, d are real constants, and f is the frequency
variable in gigahertz.
Substituting (16) and (17) into (15), we obtain

-] - [E]

which is an equation for an ellipse. The imaginary parts
(o1 and as) of the complex modes fall into the loci of an
ellipse if 8, and B, are assumed to be two linear functions of

(18)
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Fig. 5. Mode-coupling between two forward traveling waves. The solid lines
represent the SDA data. The dotted lines represent the hypothetical modes 8,
and 3,. The dashed-dotted lines represent the coupling modes 5, and SBo.
(a) Determination of the hypothetical uncoupled modes 8, and 8y from the
fullwave SDA mode spectrum. F2 and F3 are two modes obtained by the
SDA. K/ko = 0.0073. (b) Comparison of the mode spectrum obtained by
SDA and that by mode-coupling using 3p and /3, obtained in (a).

40

frequency. The real part of the complex modes is (5, + 34)/2
derived directly from (5) and (6). The ellipse is symmetric
about the frequency axis as illustrated in Fig. 6(a). When
Bp = By, |a1 — aa| = 2K. The long axis and short axis are
K/((a—¢)/2) and K, respectively. The ellipse is centered
at point [(d — b)/(a — ¢),0]. Once the ellipse is known, the
quantities K, (a —¢), (d — b) are readily known. We need
two more equations to determine a, b, ¢, d. When @1 or 0 = 0
in (15), 8, — B, = 2K. In Fig. 6(a) [or (b)], we may draw
two vertical line segments (tangential to 81 and (2 curves)
passing through the point where «; or 3 = 0 or, equivalently,
001 or 2/0w = 00, either upward or downward by a distance
K. In this way, points U and D are defined as indicated in
Fig. 6(a) or (b). The hypothetical modes 3, and 3, must pass
through these points U and D, respectively. Substituting the
two coordinates of points U and D into equations (16) and
(17), respectively, we obtain another two equations. Finally,
the constants a, b, ¢, d are solved.

The only one problem remaining is how to obtain the
ellipse that approximates the region where complex modes
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Fig. 6. Mode-coupling between a forward wave and a backward wave. The
solid and dotted lines correspond with the left hand side vertical axis. The
dashed lines correspond with the right hand side vertical axis. k' = K/ko.
Synthesis of hypothetical modes 3, and 8, from the complex modes data
approximated by an ellipse. (b) Determination of the ellipse obtained by the
data points 1, m and n corresponding to those in frame (c) of Fig. 3. After
the ellipse is known. 8, and B, are obtained with a/ko = 0.077, b/ko =
1.34, ¢/ko = —0.067, d/ko = —1.54, K/ko = 4.0. (c) Comparison of
the mode spectrum obtained by SDA and that by the model using 8, and 3,
obtained in (b). the solid lines and dashed lines represent the SDA normalized
propagation and attenuation constants, respectively. The dashed-dotted lines
represent the corresponding coupled-mode solutions +; and vs.

exist. Note that in the mode spectrum of Fig. 3, the regions
containing complex modes can never be elliptical because the
mode couplings between various complex modes occur. To
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avoid such influence by the existence of other complex modes
nearby, Fig. 6(b) illustrates the points [, m, and n chosen
for determining the ellipse using the frame (c) of Fig. 3 as
an example. An ellipse can be uniquely defined by knowing
three points on its loci and the even symmetry about the
frequency axis. Once the ellipse is obtained, such as the one
shown in Fig. 6(b), the hypothetical modes 3, and 3, can be
obtained with their parameters a, b, ¢, d and coupling factor
K, indicated in the same figure. Note that in parts (a) or (b)
of Fig. 6, a small backward wave region exists.

Fig. 6(c) compares the resultant coupled-mode solutions
obtained by substituting the values of 8, and §, of Fig. 6(b)
into (5) and (6) with the full-wave SDA data near 35.55 GHz.
The solid lines are for the SDA Fy—Bg traveling wave pair
and the real part of the SDA complex modes. The dashed lines
are for the imaginary part of the SDA complex modes. All the
dashed-dotted lines are the corresponding data obtained by the
mode-coupling model. These two sets of data agree favorably.

C. Mode Coupling Between Two Complex Modes:
Complex Modes Still Exist.

Using the same procedure described in the previous sec-
tion, we obtain two hypothetical complex modes <y, and -y,
corresponding to the F7;—B; and Fg—Bs pairs in Fig. 3,
respectively. These two hypothetical modes are elliptical in
shape as shown in Fig. 7(a). To obtain the resultant coupled-
mode solutions from 7, and +y,, the group velocity of the
complex modes must be known. Given a pair of complex
modes, say, 7,, that propagate with the same phase velocity
Bp, and the same group velocity (905,/ 8w)_1, and that have
the same magnitude but different signs for the attenuation
constants, we may consider one of the complex modes car-
rying on exponentially decaying energy and the other an
exponentially rising energy. The net sum of the total energy
carried by this complex mode, vy,, is zero [23]. In Fig. 7(a),
Yo = Bp(7) £ jap(7) and 4 = B4(6) & jag(6). The ellipses
denoted by +a,(7) and +a,(6) intersect at point Q. (Here,
only one of the four intersecting points is shown.) Two straight
lines denoted by 3,(7) and 3,(6) intersect at point P. Because
(8B, /0w)-(0B4/8w) < 0, the group velocities of the complex
modes 7, and 7, are in opposite directions. Therefore, the
lower sign (—) should be applied to (5) and (6) to the resultant
coupled-mode solutions y; and .

When v, = 7,, i.e., at the intersecting points of the two
ellipses, (5) and (6) yield

71 = Yplor vg) + K (19)
Y2 = ’)’p(OI' 'Yq) —-JK (20)
A"y =% — V2 = QjK (21)

Accordingly, the coupling factor K can be easily obtained
from the full-wave SDA data by applying (21) to the full-
wave data such as that which appears in frame (d) of Fig. 3,
which shows the K/ko = 0.1. Substituting the known value
of K, the complex values of 7, and v, of Fig. 7(a), which are
obtained as described in the Section VI-B, into (5) and (6),
we obtain the coupled-mode solutions of y; and y,. Note that
the solid and dashed lines represent the normalized complex
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Fig. 7. Mode-coupling between two complex modes. The solid and dashed
lines represent the normalized propagation constant and attenuation con-
stant, respectively. The dashed-dotted lines represent the corresponding cou-
pled-mode solutions 1 and 2. (a) Two hypothetical modes v, and 4
obtained directly from Fig. 3 using the procedure described in Section VI-B,
where the corresponding straight lines for obtaining the two ellipses are:
F¢Bs: a/ko = 0.0770, b/ko = 1.34, ¢/ko = —0.067, d/ko = —1.54,
K/ko = 4.0; F7B7: a/ko = 0.0256, b/ko = 031, c¢/ko = 0.0256,
dfko = —0.712, K[/ko = 1.57. (b) Comparison of the mode spectrum
obtained by SDA and mode-coupling (5) and (6) using v, and 74, ie. two
ellipses, obtained in (a). K/ko = 0.1.

propagation constants of the SDA data, while the dashed-
dotted lines are for the corresponding coupled mode solutions.
These two sets of data agree closely to each other. Fig. 7(b)
illustrates the fact that the interaction of two pairs of complex
modes may also result in the complex modes.

VII. CONCLUSION

In this paper, a study of the formation of complex modes us-
ing unified model-coupling theory is presented. The nonrecip-
rocal finline, rather than the reciprocal guided-wave structure,
was chosen as the vehicle for investigation so as to simplify the
mode spectrum. The entire mode spectrum of Fig. 3 has been
examined closely. For example, it has been shown that modal
interaction between forward (or backward) traveling waves
in the same direction will not produce complex modes, but
that the interaction between a forward wave and a backward
wave will if their propagation constants are the same, i.e.,
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their modal spectral lines intersect. The unified mode coupling
theory has been used to explain the behavior of the mode
spectrum.

Beyond the qualitative description of mode-coupling effects
on the mode spectrum of the nonreciprocal finline under
investigation, this paper provides mathematical details on
the modeling of the three types of mode interactions in the
nonreciprocal finline. Good agreement between the approxi-
mated coupled-mode solutions and the full-wave SDA data
for propagation constants is obtained for all three types of
mode interaction. Although the physical interpretation of the
hypothetical modes is not given in the paper, the authors intend
to report on this subject in a separate paper.

The work performed in this paper can be extended to
the study of mode-coupling effects on the reciprocal guided-
wave structures without much difficulty. For example, two
codirectional evanescent modes will result in a pair of complex
modes that have the mathematical form of either pair 1 or pair
2 of the first type given by equations (1) and (2), respectively.
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