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On the Mode-Coupling Formation of Complex

Modes in a Nonreciprocal Finline
Ching-Kuang C. Tzuang, Senior Member, IEEE and Jinq-Min Lin, Student Member, IEEE

Abstract— This paper studies and models the mechanism for
forming the complex modes commonly found in boxed quasi-

planar or planar guided-wave structures. To illustrate the fact

that the mode-coupling among the various forms of modes is
closely related to the formation of complex modes, the dis-

persion characteristics of the complex propagation constants
(or the so-called mode spectrum) of a nonreciprocal unilateral
fhdine are obtained by the rigorous full-wave SDA (spectral-

domain approach). It is found that in the mode spectrum of
the nonreciprocal finline, a forward wave and a backward wave
interact to produce a pair of complex modes. The interactions

between two forward (backward) traveling waves, between a
forward wave and a backward wave, and between two complex

waves (modes) are modeled by applying the model-coupling
theory. The concept of hypothetical modes is introduced in the
model. These hypothetical modes are obtained by applying mode-

coupling theory to the mode spectrum previously obtained. The
approximate values obtained for the propagation constants of the
three types of wave interactions using the model presented in
the paper are in close agreement with those given by the full-wave
SDA.

I. INTRODUCTION

I N open lossless media, the following types of guided

complex waves at a plane interface have been reported

[1]: 1) a forward surface wave and a backward surface wave

coexisting in pairs and carrying no net real power, 2) two

degenerate proper (spectral) complex waves coupled in a

manner that no real power is carried, and 3) improper leaky

waves. The existence of complex waves (modes) in electrically

shielded lossless waveguides, e.g., dielectric-loaded partially

filled circular waveguide [2], double-layer circular waveguide

[3], [4], shielded dielectric image guide [5], [6], finline [7],

microstrip line [8], [9], suspended coupled microstrip line [10],

CPW (coplanar waveguide) [11], and asymmetric coupled

suspended striplines [12], has already been reported. These

complex modes, it has been shown, appear inside an electric

enclosure and they are not leaky waves. The complex modes

are also physical modes which must be considered if accurate
results are to be obtained for a discontinuity problem. Omar

and Schunemann demonstrated this in their analysis of a
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finline step discontinuity problem [7]. The complex modes are

therefore the essential constituent part of the mode spectrum

associated with many inhomogeneously filled waveguides.

Some research has been conducted toward understand-

ing the general properties of the guided complex modes.

Omar and Schiinemann show that complex modes and back-

ward waves can be supported by inhomogeneously filled

and anisotropically filled lossless waveguides of arbitrarily

shaped cross section [13]. Another comprehensive treatment

on the existence of complex modes in such lossless inho-

mogeneously filled dielectric waveguides has been reported

separately by Mrozowski and Mazur [14] – [16]. They showed

that, in slightly perturbed homogeneous structures, a pair of

degenerate TE and TM modes existing in the homogeneous

guide are quite sensitive to the small perturbation. These

degenerate and below-cutoff modes then lead to the formation

of complex modes in pairs. Subsequently, they established a

formulation that predicts the existence of complex modes in

lossless dielectric guides [15], [16].

The main aim of this paper is to understand and model

in a very general sense the mechanism which forms the

complex modes. Apart from presenting an analysis of the

complex modes in the reciprocal waveguides, this paper gives

the dispersion characteristics of the propagation constants, or

the so-called mode spectrum, of a nonreciprocal unilateral

finline calculated by the rigorous full-wave SDA (spectral-

domain approach). Propagation in a nonreciprocal waveguide

consists of a group of forward traveling waves and a group of

backward traveling waves, of which the propagation constants

differ in sign and magnitude. This allows us to plot the mode

spectrum, as shown in Figs. 3 –7 and discussed in Section IV,

as a function of frequency. The dual vertical axes are centered

at zero value. The left axis is for the normalized propagation

constant (@/ko), while the right axis is for the normalized

attenuation constant (a/ko). Such an arrangement for the plot-

ting of mode spectrum of the nonreciprocal finline differs from
all the above-mentioned reports for the reciprocal waveguides

[2]-[16] and nonreciprocal waveguides [17] -[19]. In these

reports, the normalized propagation constant is assumed to be

only either positive or negative in value. Section IV summa-

rizes three types of wave interactions depicted (in the mode

spectrum), namely, 1) between a forward (backward) traveling

wave and a forward (backward) traveling wave, 2) between a

forward wave and a backward wave, and 3) between a pair of

complex modes and a pair of complex modes.

These various types of wave interactions between different

modes can be explained qualitatively by invoking the mode-
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coupling theory [20] in Section V. The theory is briefly

reviewed and extended to explain how different types of

mode interactions are established. Section VI introduces the

concept of hypothetical modes, which are @ained by applying

the mode-coupling theory to the mode spectrum previously

obtained by the full-wave SDA. The hypothetical modes

are assumed to be either linear or elliptical with frequency

although they are not necessarily linear or elliptical. The mode

couplings of these hypothetical modes result in propagation

constants of which the values are in very close agreement with

the full-wave data for the various types of mode interactions

discussed in Sections IV and V. The procedure to determine

the coupling coefficients between these various mode interac-

tions and the corresponding hypothetical modes is presented in

detail. The important conclusions are outlined in Section VII.

For the sake of clarity, Section II lists the symbols used

throughout this paper. Section 111states the problems associ-

ated with the complex modes.

II. LIST OF SYMBOLS

Throughout the paper, the lossless waveguide cross section

is assumed to be in the Cartesian x-y plane. The waveguide

supports modes propagating along the longitudinal z direction.

We list the following symbols for reference.

#t: the time-harmonic factor of angular frequency w =

2T f
e–~~z;thez-dependence factor

T = /3 – ja: T is the complex propagation constant, ~ and
a are real numbers

~: the propagation constant, or the real part of the complex

propagation constant

a: the attenuation constant, or the imaginary part of the

complex propagation constant

%: the complex propagation constant of the hypothetical
mode p

-yg: the complex propagation constant of the hypothetical

mode q

the

the

the

the

the

forward traveling wave [20]: ~ >0, ~ = O

backward traveling wave [20]: /3 <0, a = O

forward wave [21]: (~) . (8@/8w) >0

backward wave [21]: (,B) . (~~/6’w) <0

group velocity Wg = (8P/8w)-l

III. STATEMENT OF PROBLEMS ASSOCIATED WITH

COMPLEX MODES

The time-harmonic solutions for the complex modes of a

reciprocal waveguide are located in the four quadrants of the

complex ~ plane [4]. These complex modes (~) which appear
in pairs can be divided into two types. Omar and Schunemann,

for example, chose one pair of the complex modes of the jirst

type for their finline discontinuity analysis [7]

‘Y = *O – .iQ (0 >0, a > O) (pair 1 of the first type).

(1)

1401

They also demonstrated that, by choosing pair 1 of the first

type, the Poynting power of the complex modes carries no

real (active) power. Since the finline is reciprocal, the seclcmd

remaining choice for ~ is

T = +P + ja (B >0, a > O) (pair 2 of the first type) .

(2)

By investigating the derived characteristic equation for the

normalized propagation constant of a reciprocal dielectric-

loaded circular waveguide, Clarr-icoats reported that in the

vicinity of the special points denoted by P, Q, R, S shown

in Fig. 1, the magnitude and sign of the complex propagation

constant ~ (the complex modes) can be assigned as indicated

[2]. No complex modes exist near points P and Q in case (a)

and case (b) of Fig. 1. For case (c), the complex modes near

point R can be grouped into two pairs according to equations

(1) and (2). While for case (d), the complex modes near point

S take the following forms:

Y = B * j~ (~ >0, ~ > O) (pair 1 of the second type)

(3)

or

v = –0+.ja (/? >0, a > O) (pair 2 of the second type).

(4)

The following questions can be posed.

1) How general is Clarricoats’ theory? Can it be applied to

guided-wave structures other than the special dielectric-loaded

circular waveguide that he investigated?

2) Does a general theory exist that can explain and model

what happens in the mode spectrum of Fig. 1 and that of all the

above-mentioned papers [2] – [19]? For example, Clarricoats

pointed out that, referring to the case (d), where a forward

wave and a backward wave coexist, there must be a pair

of complex modes. Case (c), however, generates a pair of

complex modes not resulting from a forward wave and a

backward wave.

3) When will the two propagating modes or the two evanes-

cent modes not form the complex modes?

In what follows, we will report a unified theory to resolve

the questions raised in this section.

IV. COMPLEX MODES IN A NONRECIPROCAL FINLINE

Equations (l)–(4) represent various possible ways of grcup-

ing the solutions for the complex modes in the ~-plane, at IIeast

for the special case studies conducted by Clarricoats, Omar

and Schunemann, and others [2]–[19]. If a nonreciprocal

waveguide can support complex modes, then, because of the
clear distinction between a forward traveling wave (~ ;> O)

and a backward traveling wave (~ < O) in this type of wave-

guide, only one pair of complex modes will be generated. The

nonreciprocity destroys the possibility of choosing the second

pair of complex modes once the first pair of complex modes is

obtained. In contrast to the two-pair solutions for the complex
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No complex modes exist.
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Fig. 1. Properties of the complex propagation constants near the special points denoted as P, Q, S for the four types of mode spectrum, case (a)-through-(d),

respectively. Case (a) two degenerate cut-off modes at point P. Case (b) 8a/8f = O at point Q, the bottom of an ellipse shape. Case (c) EkY/~~ = co

at uoint R. where the comdex modes are in either +/3 + ia or +6 — icI mathematical form. Case (d) 8/3/ ~f = cc at point S, where the complex
1 ,. ,“

modes are’ in either B + ~o or —~ + jcs mathematical form.

modes in a reciprocal waveguide, the one-pair solutions for

the complex modes in a nonreciprocal waveguide distribute

themselves at only two of the four quadrants of the complex T

plane. Thus, the complexity of the mode spectrum containing

the complex modes is reduced by half.

To illustrate the complex modes existing in a nonrecipro-

cal waveguide, the mode spectrum (Ey-odd, Ex-even) of a

symmetric unilateral fmline with the material and structural

parameters shown in Fig. 2 is plotted in Fig. 3. As reported

in [22], the finline dispersion characteristics shown in Fig. 3

changed little when the applied dc magnetic field Ho varied

from 500 Oe to 30 Oe. It is believed that Fig. 3 illustrates the

common dispersion characteristics of an electrically shielded

nonreciprocal waveguide. A ferrite substrate magnetized in

the x-direction is sandwiched between two homogeneous

dielectric layers with relative dielectric constants S2 and S4.

Another homogeneous layer of El is to the right of the metal

fins. Fig. 3 has dual vertical axes: on the left is the normalized

propagation constant, whereas on the right is the normalized

attenuation constant.

Being a nonreciprocal waveguide, the fir-dine has many

forward traveling waves which are denoted as F1 –F7 in

Fig. 3. These forward traveling waves, by definition, have pos-

itive real propagation constants (-y > O). In contrast, 111–B7,

which denote the backward traveling waves, have negative real

propagation constants (~ < O). These two groups of modes

occupy the upper half and lower half of the mode spectrum,

respectively. Three types of mode interactions which exist in

the Fig. 3 will be discussed.

The first type of mode interaction is that the mode spectra,

represented by F1 –F? (or B1 –B7), neither intersect with each

other, although some come close to each other, nor form any

complex modes. For example, frame (a), at the upper side

Fig. 2. Cross-sectional geometry of a unilateral finline integrated on the
stratified layers containing a ferrite substrate magnetized in x-direction. The

structural and material parameters are: 11 = 3.556 mm, d = h = 1 mm,
t4 = 1.556 mm, b = 3.556 mm, SI = S2 = 1.628 mm, w = 0.3 mm,

E1 = ~4 = 1, ez = :3 = 12.5, 47rA!fs = 4900G, and HO = 5000e.

of Fig. 3, shows that the modes designated as I?z and F3

have normalized propagation constants which differ by a very

small value near 32.5 GHz. Similarly, in frame (b), the two

backward traveling modes B3 and B4 do not intersect near

39.2 GHz.

The second type of implied mode interaction illustrated in

Fig. 3 is the type shown by the modes designated as F4–Bb,

F5 –B5, F6 –B6 [frame (c)], and F7–B7 pairs. The F7–B7

pair, for example, constitutes a pair of complex modes below

41.3 GHz, where ~,llf~w = cm. A detailed SDA study of the

F7–B7 pair indicates that at the point where the group velocity

is zero, i.e., (~,8/6’u)-l = O (or 8/?/~w = cm). Therefore, a

small backward wave region exists in Fig. 3. This will be

discussed in more detail in Section V. All the Fi –Bi pairs,
i = 4 to 7, have small backward regions. The complex modes

exist to the left of the intersect points where tl~i /~w = cm and
i = 4 to 7. These complex modes are found to be of either

~ = ~ +jCY type [equation (3)] or ~ = –~ +ja [equation (4)]
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Fig. 3. The mode spectrum (.b%-even, Ey-odd) of a symmetric unilateral
finline of Fig. 2. The solid lines represent the normalized propagation constant

(the real part of the complex propagation constant) and correspond to the
left hand side of vertical axis. The dashed lines represent the normalized

attenuation constant (the imaginary part of the complex propagation constant)
and correspond to the right hand side of vertical axis.

type. These types of complex modes coincide with the case

(d) of Fig. 1, where complex modes coexist with the backward

waves and the complex modes possess the mathematical form

of either equation (3) or (4). The complex modes found here

are apparently the result of mode interaction of a forward wave

and a backward wave.

The third mode interaction is not merely confined to the

modes possessing real propagation constants, but may occur

between two complex modes. This additional complication is

shown in frame (d) of Fig. 3. In order to understand why the

imaginary parts do not intersect and real parts do, the real

and imaginary parts of the propagation constant need to be

investigated simultaneously. Similar observations are found in

other locations of Fig. 3.

In summary, when two modes with nearly equal propagation

constants interact, the result of mode interaction is either

modes with purely real propagation constants or modes with

complex propagation constants (complex modes). Further-

more, the various types of complex modes may also interact

to produce other complex modes.

In the next section, the mode-coupling theory will be

reviewed. This theory can be used to explain all the above-

mentioned observations on the mode spectrum of Fig. 3 quali-

tatively and to model the various types of the mode interactions

quantitatively.

V. MODE-COUPLING THEORY AND THE COMPLEX MODES

A. Review of Mode-Coupling Theory

When two independent modes 7P and Tg propagate along

separate waveguides and couple through an aperture, the

resultant modal solutions after coupling has occurred are

designated as ~1 and 72. Pierce formulated the relationship

between (7I, 72) and (7P, Tg) as follows [20]:

7p+ ’yq+
y~ = {( )7P–’%? 2*K2

2 2
(5)

where K is the coupling factor between 7P and ~~.
If TP and ~~ represent the modes with codirectional power

flow, then the upper sign (+) applies in (5) and (6); but if 7P

and y~ have contradirectional power flow, the lower sign (–)

applies. Note that group velocity defines the direction of power

flow of a certain mode. Therefore, the slope of a certain mode

in Fig. 3 defines the direction of power flow of that particular

mode.

Inversely, 7P and Yq can be expressed in term of 71, 72,

and K.

~p =71+72

{( )

?’1 -72 2

2+ 2
-+ K2 (7)

~q =71+72

/( )

?’1-7’2 2—— —
2 2

~K2. (8)

In (7) and (8), if ~1 and -y2 have codirectional power flow,

the upper sign (–) applies, otherwise, the lower sign (+)

applies. The coupling coefficient K and the sign (+/–) relate

the modes before and after the coupling. Knowledge of the

K value and power flow directions enables the derivation of

the hypothetical modes, % and y~, from the modes ‘Y1 and 72

(i.e., SDA data).

The resultant modal solutions 71 and 72 are the true

electromagnetic wave solutions satisfying the boundary value

problem imposed on Fig. 2. These two modes, 71 and 72,

can be obtained from the full-wave SDA approach. In fact,

the mode spectrum of Fig. 3 can be viewed, in a much more

general sense, as not being limited to two modes. The mode

~~ represents the ith mode, where i = 1,2,.00, N and N is

the number of modes shown in Fig. 3.

The corresponding modes to T1 and 72 before the coupling

occurs are called the hypothetical modes because they do not

satisfy the boundary value problem of the specific waveguide

structure. These hypothetical modes with complex propagation

constants, designated as yP and Tq, will be shown to be very

useful for explaining and modeling the three types of mode

interactions summarized in Section IV.

B. Qualitative Description of Mode-Coupling Mechanism

in the Nonreciprocal Finline

Frames (a), (b), (c), and (d) of Fig. 3 in Section IV illustrate

“three kinds of mode interactions existing in the nonreciprocal

finline shown in Fig. 2. With the aid of two-dimensional mclde-
coupling theory (N = 2) and the concept of hypothetical

modes, described in Section V-A, the nature of mode-couplling

in each case described in Section IV is investigated. Throu~gh-

out the paper, the hypothetical modes 7P and ‘yq are assumed

to be either a linear or an elliptical function of frequency. ‘The
determination of the hypothetical modes, 7P and ~q, and their
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Fig. 4. Various types of mode interaction explained by mode-coupling theory. Subscripts 1 and 2 denote the true modes satisfying the boundary conditions
imposed on Fig. 2. Subscripts p and g denote the hypothetical modes before the coupling occurs. All horizontal axes are the frequency axes in GHz. The

solid lines and the dotted lines represent the normalized propagation constants. The dashed lines and dashed-dotted lines represent the normalized attenuation
constants. (a) Mode interaction between two forward traveling waves. Solid lines: true modes; dotted lines: hypothetical modes. (b) Mode interaction between
two backward traveling waves. Solid lines: true modes; dotted lines: hypothetical modes. (c) Mode interaction between a forward wave and a backward wave.
Dotted lines: hypothetical modes; solid lines: real parts of YI and 72; dashed lines: imaginary parts of VI and 7Z. (d) Mode interaction between two pair of
complex waves. Solid lines: real parts of hypothetical modes; dashed lines: parts of hypothetical modes; dashed-dotted lines: the corresponding -YI and ~a modes.

coupling factor K will be described in Section VI for all three

kinds of mode interactions individually.

1) Mode Interaction Between a Forward (Backward) Trave-

ling Wave and a Forward (Backward) Traveling Wave: Mode

F1 and F2 in frame (a) of Fig. 3 are approximated by two

hypothetical modes, 7P and ?~, which are two straight lines

in the mode spectrum. The arrangement is shown in Fig. 4(a),

where TP > 0, ~~ > 0, dTP/dW > 0, &y~/~w > 0. Thus,

% and % represent two fo~ard traveling waves which have
codirectional power flow. To determine ~1 and 72, the upper

sign (+) is applied in (5) and (6). Obviously, 71 and 72 are

always real, and therefore no complex propagation constants

can be obtained. The resultant coupled-mode solutions for 71

and 72 by applying (5) and (6) to the two assumed hypothetical

modes 7P and ~q are also shown in Fig. 4(a).

In frame (b) of Fig. 3, modes B2 and B3 can also be

approximated by two straight lines 7P and Vq as shown in

Fig. 4(b). Now, TP <0, Tq <0, 8TP/8W <0, tlyq/8w <0.
Thus, yp and yq represent two backward traveling waves with

codirectional power flow, which is opposite to the previous

case shown in Fig. 4(a). Again, the upper sign (+) is applied

in (5) and (6) to determine 71 and 72. The values for T1 and

72 must also always be real and, as a consequence, there also

exist no complex modes.

2) Mode Interaction Between a Forward Wave and a Back-

ward Wave: Equations (5) and (6) indicate that the complex

modes will occur when certain conditions are met. If 7P and

Tq are two propagating modes (i.e., a = O), then T1 and 72 are

complex modes only when the lower (–) sign is applied in the

square root calculation. When ?P and vg are two evanescent

modes (i.e., ~ = O), then VI and 72 will be complex modes

only when the upper (+) sign is applied to (5) and (6).

If two hypothetical modes 7P and ~q are assumed as shown

in Fig. 4(c), a forward wave and a backward wave near the

intersecting point of the two straight lines can be defined.

(This will become clear in the next section.) With proper

determination of the value of coupling factor K, equations

(5) and (6) will yield the solutions for YI and 72 as shown

in Fig. 4(c). The two solid lines represent both the forward

traveling wave and the backward traveling wave. The solid

line labeled 81 = ~2 shows the degenerate real parts of the

complex modes and has a starting point at ~/3/dw = m. The

dashed lines labeled al or C12are the two imaginary parts

of the complex propagation constants. These results are very

similar to those reported in Fig. 3 for the same form of mode

interaction.

3) Mode Interaction Between Two Complex Modes: In the

next section, it will become clear that the complex propagation

constants yI and 72 have their imaginary parts on the loci

of an ellipse, if 7P and yq are assumed to be linear with

respect to frequency. To begin, when we’re interested in

understanding the mode interaction between two complex

modes, it is assumed that the complex modes have their

complex propagation constants like those shown in Fig. 4(d).

NOW, the two hypothetical modes 7P and T~ are no longer

linear functions of frequency. QP and CY.q(in dashed lines), the

imaginary parts of 7P and ~g, represent two ellipses with long

and short axes, respectively. Since & and ,6q, the real parts of

7P and Vq, respectively, are two straight lines intersecting at

the point P, the product of ~,Bp/~w and ~~q /~w is negative.

Thus, the lower sign (–) in (5) and (6) applies in this case.
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consequently, near the point P (aP = aq, & = /?q), the

imaginary parts al and cw of the corresponding T1 and 72

should be either higher or lower than the values of aP (or

a~) at the intersecting point Q, where point Q and point P

are at the same frequency. The results for ~1 and 72 using

the dashed-dotted lines for the imaginary parts are plotted for

comparison with those shown in frame (d) of Fig, 3. Again,

both look very similar.

By invoking the model-coupling theory and making a proper

choice for the two hypothetical modes ?P and Tg, the entire

mode spectrum shown in Fig. 3 has been explained success-

fully. Thus, the questions raised in Section III have been

resolved, at least qualitatively.

VI. QUANTITATIVE DESCRIPTION OF MODE-COUPLING

MECHANISM IN THE MODE SPECTRUM OF FIG. 3

The material presented in Section V explained the mode-

coupling effects of various types of modes. This section shows

how to determine the hypothetical modes 7P and Tq, and

the value of the coupling factor K directly from the full-

wave data shown in Fig. 3. By doing so, it is hoped that a

deeper insight into the physical nature of the mode spectrum

can be gained. Furthermore, if the hypothetical modes 7P

and Tg can be obtained in a systematic and correct way,

substitution of their values into equations (5) and (6), should

allow comparison with the full-wave SDA solutions. If 7P and

~g are obtained correctly, both coupled-mode SOIUtiOnS and
full-wave data should be inclose agreement. Since, there are

mainly three distinct types of mode interactions discussed, we

will investigate ‘them separately.

A. Mode-Coupling Between Two Forward

(Backward) Traveling Waves

For the case of hypothetical forward or backward traveling

modes, no complex modes exist as explained in Section V-B-

1. Turning to Fig. 4(a) or (b),

7P = AJ (9)

‘Yq = Pq (lo)

(ty3p/c9w) . (a/3q/&J) >0 (11)

where @p (’Yp) and Dq (Tq) are both real numbers and have
codirectional power flow. Let

A/3=,&-/32. (12)

Substituting (5) and (6) into (12), we obtain

/( )~p-~q‘+ K’.A/3=2 —
2

(13)

After some algebraic manipulations, we have

aA/3

app

aAp

apq

=0 (14a)
0, =pq

==o (14b)

P*=P,

a’Afl ._—
w: p,=(3,

/!+>0 (14C)

(14d)

Parts (a)–(d) of (14) suggest that AD has a minimum value

of 2K when ~P = ~q. Turning to frame (a) of Fig. 3, an

examination of the modes F’ and F3 shows that AP = /?1– O’

has a minimum value. Using the data shown in frame (a) as

an example, the minimum of A@ occurs at 32.5 GHz, which

means A~/ko = 2K/ko = 0.0146. The slopes for the two

straight lines ,6P and ~q are approximately determined by the

neighboring points on ~1 and /3z. One proper choice for Op and

& is as indicated in Fig. 5(a), where they are ChOSenaS two
asymptotic lines. Fig. 5(b) compares the resultant ~1 and ,6’

obtained by substituting the values of Dp and @qinto equations

(5) and (6) to those obtained from the SDA data. Very close

agreement is obtained. The physical interpretation of Fig. 5(a)

and (b) is as follows. At the point where the two hypothetical
propagating modes, BP and ~q, possessing codirectional power

flow intersect, strong coupling occurs and a mode conversion

(exchange) takes place. The two modes then settle to become

the physical /?I and ~2 modes.

B. Mode Coupling Between a Forward Wave and a

Backward Wave: Complex Modes Occur

Assume that a forward traveling wave & and a backward

traveling wave ~q can be approximated by two straight lines.

These 13p and ~q modes are hypothetical and are defined
above the frequency, jfnt~~~, the intersecting frequency of the

two modes as shown in Fig. 6(a). A backward wave region,

where @q. (apq /i3w) <0, can be defined for the hypothetical

mode @q. /3p is obviously a forward wave. Substituting the

values of ,6P and /39 into (5) and (6), one obtains the coup~ed-

mode solutions -yl and 72. As shown in Fig. 6(a), a region of

complex modes exists. The resultant coupled-mode solutions

also exhibit a backward wave region.

From (5) and (6), the complex modes, due to mode coupling

of a forward wave and a backward wave, have their imaginary

parts expressed as

{( )Dp-fll 2–K2=+ja10r2.
2

(15)

Let the two straight lines representing ,f3Pand 09 be

f?p=a. j+b (16)

,L?q=c. f+d (17)

where a, b, c, d are real constants, and ~ is the frequency

variable in gigahertz.

Substituting (16) and (17) into (15), we obtain

H312+*=H2 ’18)
which is an equation for an ellipse. The imaginary parts

(al and CW) of the complex modes fall into the loci of an
ellipse if flp and ~q are assumed to be two linear function$ of
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T
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25
Fre~~ency (G;:)

40

(b)

Fig.5. Mode-coupling between Wofomard traveling waves. Thesolid lines
represent the SDA data. The dotted lines represent the hypothetical modes ~P

and @q. The dashed-dotted lines represent the coupling modes ~1 and ~2.

(a) Determination of thehypothetical uncoupled modes~P and~q from the
fullwave SDA mode spectrum. F2 and F3 are two modes obtained by the
SDA. K/lco = 0.0073. (b) Comparison of the mode spectrum obtained by
SDAandthat bymode-coupling using& andflq obtained in(a).

frequency. The real part of the complex modes is (BP + ,6g)/2

derived directly from (5) and (6). The ellipse is symmetric

about the frequency axis as illustrated in Fig. 6(a). When

& =@q, 1~1–cwl =2 K. Thelong axis andshort axis are
K/((a–c)/2) and K, respectively. The ellipse is centered

at point [(d–b)/(a–c), O]. Once the ellipse is known, the

quantities K, (a – c), (d – b) are readily known. We need

two more equations to determine a, b, c, d. When al., z = O

in (15), /?p – @q = 2K. In Fig. 6(a) [or (b)], we may draw

two vertical line segments (tangential to @l and ~2 curves)

passing through the point where al., z = O or, equivalently,

~@l .r 2/~w = co, either upward or downward by a distance

K. In this way, points U and D are defined as indicated in

Fig. 6(a) or (b). The hypothetical modes ~p and ,Bq must pass

through these points U and D, respectively. Substituting the

two coordinates of points U and D into equations (16) and

(17), respectively, we obtain another two equations. Finally,

the constants a, b, c, d are solved.

The only one problem remaining is how to obtain the

ellipse that approximates the region where complex modes

cx/ko
5
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o
Backwd d=wave r ;gions
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,
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.42 ,.-
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~ . . . . . . . . . . .. . . .

./,<< . . . .--- . -__-_-—-—--:: . -a-

– 1- ---------- 2

35.55—

3 4~
Freq~ency ~GHz)

(c)

Fig. 6. Mode-coupling between a forward wave and a backward wave. The
solid and dotted lines correspond with the left hand side vertical axis. The
dashed lines correspond with the right hand side vertical axis. K’ = If/ko.
Synthesis of hypothetical modes (32 and /3g from the complex modes data

approximated by an ellipse. (b) Determination of the ellipse obtained by the
data points 1, m and n corresponding to those in frame (c) of Fig. 3. After
the ellipse is known. p’P and @q are obtained with a/ko = 0.077, b/ko =
1.34, c/ko = –0.067, d/ko = – 1.54, h“/ko = 4.0. (c) Comparison of
the mode spectrum obtained by SDA and that by the model using ~P and ~q
obtained in (b). the solid lines and dashed lines represent the SDA normalized
propagation and attenuation constants, respectively. The dashed-dotted lines
represent the corresponding coupled-mode solutions -yI and 72.

exist. Note that in the mode spectrum of Fig. 3, the regions

containing complex modes can never be elliptical because the

mode couplings between various complex modes occur. To
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avoid such influence by the existence of other complex modes

nearby, Fig. 6(b) illustrates the points 1, m, and n chosen

for determining the ellipse using the frame (c) of Fig. 3 as

an example. An ellipse can be uniquely defined by knowing

three points on its loci and the even symmetry about the

frequency axis. Once the ellipse is obtained, such as the one

shown in Fig. 6(b), the hypothetical modes ~P and 13~can be

obtained with their parameters a, b, c, d and coupling factor

K, indicated in the same figure. Note that in parts (a) or (b)

of Fig. 6, a small backward wave region exists.

Fig. 6(c) compares the resultant coupled-mode solutions

obtained by substituting the values of 6P and & of Fig. 6(b)

into (5) and (6) with the full-wave SDA data near 35.55 GHz.

The solid lines are for the SDA F’6-B6 traveling wave pair

and the real part of the SDA complex modes. The dashed lines

are for the imaginary part of the SDA complex modes. All the

dashed-dotted lines are the corresponding data obtained by the

mode-coupling model. These two sets of data agree favorably.

C. Mode Coupling Between Two Complex Modes:

Complex Modes Still Exist.

Using the same procedure described in the previous sec-

tion, we obtain two hypothetical complex modes 7P and vg

corresponding to the F7 –B7 and FG–BG pairs in Fig. 3,

respectively. These two hypothetical modes are elliptical in

shape as shown in Fig. 7(a). To obtain the resultant coupled-

mode solutions from 7P and Tg, the group velocity of the

complex modes must be known. Given a pair of complex

modes, say, VP, that propagate with the same phase velocity

&, and the same group velocity (tl&/~w)-l, and that have

the same magnitude but different signs for the attenuation

constants, we may consider one of the complex modes car-

rying on exponentially decaying energy and the other an

exponentially rising energy. The net sum of the total energy

carried by this complex mode, 7P, is zero [23]. In Fig. 7(a),

VP = BP(7) + @JP(7) and % = i3q(6) + ~%(6). The elliPses
denoted by +ap(7) and +aq (6) intersect at point Q. (Here,

only one of the four intersecting points is shown.) Two straight

lines denoted by /3P(7) and /?q(6) intersect at point P. Because

(O~p/&J). (d~,/&) <0, the group velocities of the complex

modes yp and TQ are in opposite directions. Therefore, the

lower sign (–) should be applied to (5) and (6) to the resultant

coupled-mode solutions ~1 and 72.

When 7P = ~~, i.e., at the intersecting points of the two

ellipses, (5) and (6) yield

T1 = ?P(or y~) + jK (19)

72 = ~P(or vg) – jK (20)

A’y=’yl-’y2=2jK. (21)

Accordingly, the coupling factor K can be easily obtained

from the full-wave SDA data by applying (21) to the full-
wave data such as that which appears in frame (d) of Fig. 3,

which shows the K/lco = 0.1. Substituting the known value

of K, the complex values of ?P and Tq of Fig. 7(a), which are

obtained as described in the Section VI-B, into (5) and (6),

we obtain the coupled-mode solutions of -yI and 72. Note that

the solid and dashed lines represent the normalized complex
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Fig. 7. Mode-coupling between two complex modes. The solid and dashed
lines represent the normalized propagation constant and attenuation con-
stant, respectively. The dashed-dotted lines represent the corresponding cou-

pled-mode solutions -Y1 and 7Z. (a) Two hypothetical modes 7P and ~q
obtained directly from Fig. 3 using the procedure described in Section VI-B,

where the corresponding straight lines for obtaining the two ellipses are:

F6B6: alko = 0.0770, b/ko = 1.34, c/ko = –0.067, dJko = –1 .54,

K/ko = 4.0; F7B7: a/ko = 0.0256, bJko = 0.31, c/ko = 0.0256,

d/ko = –0.712, K/ko = 1.57. (b) Comparison of the mode speclrum
obtained by SDA and mode-coupling (5) and (6) using 7P and Yq, i.e. two

ellipses, obtained in (a). K/ko = 0.1.

propagation constants of the SDA data, while the dashed-

dotted lines are for the corresponding coupled mode solutions.

These two sets of data agree closely to each other. Fig. Ir(b)

illustrates the fact that the interaction of two pairs of complex

modes may also result in the complex modes.

VII. CONCLUSION

In this paper, a study of the formation of complex modes us-

ing unified model-coupling theory is presented. The nonrecip-

rocal finline, rather than the reciprocal guided-wave structure,

was chosen as the vehicle for investigation so as to simplify the
mode spectrum. The entire mode spectrum of Fig. 3 has been

examined closely. For example, it has been shown that mcldal

interaction between forward (or backward) traveling waves

in the same direction will not produce complex modes, but

that the interaction between a forward wave and a backward

wave will if their propagation constants are the same, i.e.,
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their modal spectral lines intersect. The unified mode coupling

theory has been used to explain the behavior of the mode

spectrum.

Beyond the qualitative description of mode-coupling effects

on the mode spectrum of the nonreciprocal finline under

investigation, this paper provides mathematical details on

the modeling of the three types of mode interactions in the

nonreciprocal finline. Good agreement between the approxi-

mated coupled-mode solutions and the full-wave SDA data

for propagation constants is obtained for all three types of

mode interaction. Although the physical interpretation of the

hypothetical modes is not given in the paper, the authors intend

to report on this subject in a separate paper.

The work performed in this paper can be extended to

the study of mode-coupling effects on the reciprocal guided-

wave structures without much difficulty. For example, two

codirectional evanescent modes will result in a pair of complex

modes that have the mathematical form of either pair 1 or pair

2 of the first type given by equations (1) and (2), respectively.
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